Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 937
Filter
1.
J Cell Physiol ; 239(5): e31251, 2024 May.
Article in English | MEDLINE | ID: mdl-38634445

ABSTRACT

Krüppel-like factor 13 (KLF13), a zinc finger transcription factor, is considered as a potential regulator of cardiomyocyte differentiation and proliferation during heart morphogenesis. However, its precise role in the dedifferentiation of vascular smooth muscle cells (VSMCs) during atherosclerosis and neointimal formation after injury remains poorly understood. In this study, we investigated the relationship between KLF13 and SM22α expression in normal and atherosclerotic plaques by bioanalysis, and observed a significant increase in KLF13 levels in the atherosclerotic plaques of both human patients and ApoE-/- mice. Knockdown of KLF13 was found to ameliorate intimal hyperplasia following carotid artery injury. Furthermore, we discovered that KLF13 directly binds to the SM22α promoter, leading to the phenotypic dedifferentiation of VSMCs. Remarkably, we observed a significant inhibition of platelet-derived growth factor BB-induced VSMCs dedifferentiation, proliferation, and migration when knocked down KLF13 in VSMCs. This inhibitory effect of KLF13 knockdown on VCMC function was, at least in part, mediated by the inactivation of p-AKT signaling in VSMCs. Overall, our findings shed light on a potential therapeutic target for treating atherosclerotic lesions and restenosis after vascular injury.


Subject(s)
Cell Dedifferentiation , Cell Proliferation , Muscle Proteins , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Promoter Regions, Genetic , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , Promoter Regions, Genetic/genetics , Cell Proliferation/genetics , Muscle Proteins/genetics , Muscle Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice , Signal Transduction , Phenotype , Carotid Artery Injuries/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Male , Proto-Oncogene Proteins c-akt/metabolism , Cell Movement/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/metabolism , Mice, Inbred C57BL , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/genetics , Neointima/metabolism , Neointima/pathology , Neointima/genetics , Cells, Cultured , Repressor Proteins/genetics , Repressor Proteins/metabolism
2.
Atherosclerosis ; 391: 117480, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447436

ABSTRACT

BACKGROUND AND AIMS: Vascular injury-induced endothelium-denudation and profound vascular smooth muscle cells (VSMCs) proliferation and dis-regulated apoptosis lead to post-angioplasty restenosis. Coptisine (CTS), an isoquinoline alkaloid, has multiple beneficial effects on the cardiovascular system. Recent studies identified it selectively inhibits VSMCs proliferation. However, its effects on neointimal hyperplasia, re-endothelialization, and the underlying mechanisms are still unclear. METHODS: Cell viability was assayed by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and cell counting kit-8 (CCK-8). Cell proliferation and apoptosis were measured by flow cytometry and immunofluorescence of Ki67 and TUNEL. Quantitative phosphoproteomics (QPP) was employed to screen CTS-responsive phosphor-sites in the key regulators of cell proliferation and apoptosis. Neointimal hyperplasia was induced by balloon injury of rat left carotid artery (LCA). Adenoviral gene transfer was conducted in both cultured cells and LCA. Re-endothelialization was evaluated by Evan's blue staining of LCA. RESULTS: 1) CTS had strong anti-proliferative and pro-apoptotic effects in cultured rat VSMCs, with the EC50 4∼10-folds lower than that in endothelial cells (ECs). 2) Rats administered with CTS, either locally to LCA's periadventitial space or orally, demonstrated a potently inhibited balloon injury-induced neointimal hyperplasia, but had no delaying effect on re-endothelialization. 3) The QPP results revealed that the phosphorylation levels of Pak1S144/S203, Pak2S20/S197, Erk1T202/Y204, Erk2T185/Y187, and BadS136 were significantly decreased in VSMCs by CTS. 4) Adenoviral expression of phosphomimetic mutants Pak1D144/D203/Pak2D20/D197 enhanced Pak1/2 activities, stimulated the downstream pErk1T202/Y204/pErk2T185/Y187/pErk3S189/pBadS136, attenuated CTS-mediated inhibition of VSMCs proliferation and promotion of apoptosis in vitro, and potentiated neointimal hyperplasia in vivo. 5) Adenoviral expression of phosphoresistant mutants Pak1A144/A203/Pak2A20/A197 inactivated Pak1/2 and totally simulated the inhibitory effects of CTS on platelet-derived growth factor (PDGF)-stimulated VSMCs proliferation and PDGF-inhibited apoptosis in vitro and neointimal hyperplasia in vivo. 6) LCA injury significantly enhanced the endogenous phosphorylation levels of all but pBadS136. CTS markedly attenuated all the enhanced levels. CONCLUSIONS: These results indicate that CTS is a promising medicine for prevention of post-angioplasty restenosis without adverse impact on re-endothelialization. CTS-directed suppression of pPak1S144/S203/pPak2S20/S197 and the subsequent effects on downstream pErk1T202/Y204/pErk2T185/Y187/pErk3S189 and pBadS136 underline its mechanisms of inhibition of VSMCs proliferation and stimulation of apoptosis. Therefore, the phosphor-sites of Pak1S144/S203/Pak2S20/S197 constitute a potential drug-screening target for fighting neointimal hyperplasia restenosis.


Subject(s)
Berberine/analogs & derivatives , Carotid Artery Injuries , Muscle, Smooth, Vascular , Rats , Animals , Hyperplasia/pathology , Muscle, Smooth, Vascular/pathology , Endothelial Cells/metabolism , Cell Proliferation , Neointima/metabolism , Carotid Artery Injuries/pathology , Cells, Cultured , Myocytes, Smooth Muscle/pathology , Cell Movement
3.
Hypertension ; 81(4): 787-800, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240164

ABSTRACT

BACKGROUND: High blood pressure has been suggested to accelerate vascular injury-induced neointimal formation and progression. However, little is known about the intricate relationships between vascular injury and hypertension in the context of arterial remodeling. METHODS: Single-cell RNA-sequencing analysis was used to depict the cell atlas of carotid arteries of Wistar Kyoto rats and spontaneously hypertensive rats with or without balloon injury. RESULTS: We found that hypertension significantly aggravated balloon injury-induced arterial stenosis. A total of 36 202 cells from carotid arteries with or without balloon injury were included in single-cell RNA-sequencing analysis. Cell composition analysis showed that vascular injury and hypertension independently induced distinct aortic cell phenotypic alterations including immune cells, endothelial cells (ECs), and smooth muscle cells. Specifically, our data showed that injury and hypertension-induced specific EC phenotypic alterations, and revealed a transition from functional ECs to hypermetabolic, and eventually dysfunctional ECs in hypertensive rats upon balloon injury. Importantly, our data also showed that vascular injury and hypertension-induced different smooth muscle cell phenotypic alterations, characterized by deferential expression of synthetic signatures. Interestingly, pathway analysis showed that dysregulated metabolic pathways were a common feature in monocytes/macrophages, ECs, and smooth muscle cells in response to injury and hypertension. Functionally, we demonstrate that inhibition of mitochondrial respiration significantly ameliorated injury-induced neointimal formation in spontaneously hypertensive rats. CONCLUSIONS: This study provides the cell landscape changes of the main aortic cell phenotypic alterations in response to injury and hypertension. Our findings suggest that targeting cellular mitochondrial respiration could be a novel therapeutic for patients with hypertension undergoing vascular angioplasty.


Subject(s)
Carotid Artery Injuries , Hypertension , Vascular System Injuries , Humans , Rats , Animals , Rats, Inbred SHR , Endothelial Cells/metabolism , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Carotid Artery Injuries/therapy , Neointima/pathology , Rats, Inbred WKY , RNA
4.
Chin J Nat Med ; 22(1): 62-74, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38278560

ABSTRACT

Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.


Subject(s)
Cadherins , Carotid Artery Injuries , Diterpenes , Vascular System Injuries , Mice , Rats , Animals , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Vascular Remodeling , Cell Proliferation , Vascular System Injuries/metabolism , Vascular System Injuries/pathology , Carotid Artery Injuries/pathology , Molecular Docking Simulation , Muscle, Smooth, Vascular , Cell Movement , Mice, Inbred C57BL , Signal Transduction , Succinates/metabolism , Succinates/pharmacology , Potassium/metabolism , Potassium/pharmacology , Cells, Cultured
5.
Arterioscler Thromb Vasc Biol ; 43(9): 1639-1652, 2023 09.
Article in English | MEDLINE | ID: mdl-37409527

ABSTRACT

BACKGROUND: Treatment of occluded vessels can involve angioplasty, stenting, and bypass grafting, which can be limited by restenosis and thrombosis. Drug-eluting stents attenuate restenosis, but the current drugs used are cytotoxic, causing smooth muscle cell (SMC) and endothelial cell (EC) death that may lead to late thrombosis. N-cadherin is a junctional protein expressed by SMCs, which promotes directional SMC migration contributing to restenosis. We propose that engaging N-cadherin with mimetic peptides can act as a cell type-selective therapeutic strategy to inhibit polarization and directional migration of SMCs without negatively impacting ECs. METHODS: We designed a novel N-cadherin-targeting chimeric peptide with a histidine-alanine-valine cadherin-binding motif, combined with a fibronectin-binding motif from Staphylococcus aureus. This peptide was tested in SMC and EC culture assays of migration, viability, and apoptosis. Rat carotid arteries were balloon injured and treated with the N-cadherin peptide. RESULTS: Treating scratch-wounded SMCs with the N-cadherin-targeting peptide inhibited migration and reduced polarization of wound-edge cells. The peptide colocalized with fibronectin. Importantly, EC junction, permeability, or migration was not impacted by peptide treatment in vitro. We also demonstrated that the chimeric peptide persisted for 24 hours after transient delivery in the balloon-injured rat carotid artery. Treatment with the N-cadherin-targeting chimeric peptide reduced intimal thickening in balloon-injured rat carotid arteries at 1 and 2 weeks after injury. Reendothelialization of injured vessels after 2 weeks was unimpaired by peptide treatment. CONCLUSIONS: These studies show that an N-cadherin-binding and fibronectin-binding chimeric peptide is effective in inhibiting SMC migration in vitro and in vivo and limiting neointimal hyperplasia after balloon angioplasty without affecting EC repair. These results establish the potential of an advantageous SMC-selective strategy for antirestenosis therapy.


Subject(s)
Carotid Artery Injuries , Thrombosis , Rats , Animals , Fibronectins/pharmacology , Carotid Artery Injuries/pathology , Cadherins , Carotid Arteries/pathology , Hyperplasia/pathology , Peptides/pharmacology , Thrombosis/pathology
6.
Int J Mol Sci ; 24(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37511114

ABSTRACT

The effect of liver cirrhosis on vascular remodeling in vivo remains unknown. Therefore, this study investigates the influence of cholestatic liver cirrhosis on carotid arterial remodeling. A total of 79 male Sprague Dawley rats underwent bile duct ligation (cirrhotic group) or sham surgery (control group) and 28 days later left carotid artery balloon dilatation; 3, 7, 14 and 28 days after balloon dilatation, the rats were euthanized and carotid arteries were harvested. Histological sections were planimetrized, cell counts determined, and systemic inflammatory parameters measured. Up to day 14 after balloon dilatation, both groups showed a comparable increase in neointima area and degree of stenosis. By day 28, however, both values were significantly lower in the cirrhotic group (% stenosis: 20 ± 8 vs. 42 ± 10, p = 0.010; neointimal area [mm2]: 0.064 ± 0.025 vs. 0.138 ± 0.025, p = 0.024). Simultaneously, cell density in the neointima (p = 0.034) and inflammatory parameters were significantly higher in cirrhotic rats. This study demonstrates that cholestatic liver cirrhosis in rats substantially increases neointimal cell consolidation between days 14 and 28. Thereby, consolidation proved important for the degree of stenosis. This may suggest that patients with cholestatic cirrhosis are at lower risk for restenosis after coronary intervention.


Subject(s)
Angioplasty, Balloon , Carotid Artery Injuries , Liver Cirrhosis, Experimental , Rats , Male , Animals , Rats, Sprague-Dawley , Neointima/pathology , Liver Cirrhosis, Experimental/pathology , Constriction, Pathologic/pathology , Angioplasty, Balloon/adverse effects , Carotid Arteries/pathology , Carotid Artery Injuries/pathology , Hyperplasia/pathology
7.
BMC Cardiovasc Disord ; 23(1): 239, 2023 05 06.
Article in English | MEDLINE | ID: mdl-37149580

ABSTRACT

BACKGROUND: Restenosis after percutaneous coronary intervention (PCI) limits therapeutic revascularization. Neuropeptide Y (NPY), co-stored and co-released with the sympathetic nervous system, is involved in this process, but its exact role and underlying mechanisms remain to be fully understood. This study aimed to investigate the role of NPY in neointima formation after vascular injury. METHODS: Using the left carotid arteries of wild-type (WT, NPY-intact) and NPY-deficient (NPY-/-) mice, ferric chloride-mediated carotid artery injury induced neointima formation. Three weeks after injury, the left injured carotid artery and contralateral uninjured carotid artery were collected for histological analysis and immunohistochemical staining. RT-qPCR was used to detect the mRNA expression of several key inflammatory markers and cell adhesion molecules in vascular samples. Raw264.7 cells were treated with NPY, lipopolysaccharide (LPS), and lipopolysaccharide-free, respectively, and RT-qPCR was used to detect the expression of these inflammatory mediators. RESULTS: Compared with WT mice, NPY-/- mice had significantly reduced neointimal formation three weeks after injury. Mechanistically, immunohistochemical analysis showed there were fewer macrophages and more vascular smooth muscle cells in the neointima of NPY-/- mice. Moreover, the mRNA expression of key inflammatory markers such as interleukin-6 (IL-6), transforming growth factor-ß1 (TGF-ß1), and intercellular adhesion molecule-1 (ICAM-1) was significantly lower in the injured carotid arteries of NPY-/- mice, compared to that in the injured carotid arteries of WT mice. In RAW264.7 macrophages, NPY significantly promoted TGF-ß1 mRNA expression under unactivated but not LPS-stimulated condition. CONCLUSIONS: Deletion of NPY attenuated neointima formation after artery injury, at least partly, through reducing the local inflammatory response, suggesting that NPY pathway may provide new insights into the mechanism of restenosis.


Subject(s)
Carotid Artery Injuries , Neuropeptide Y , Percutaneous Coronary Intervention , Vascular System Injuries , Animals , Mice , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Neointima/pathology , Neuropeptide Y/genetics , RNA, Messenger , Transforming Growth Factor beta1/genetics , Vascular System Injuries/genetics , Vascular System Injuries/pathology
8.
Drug Des Devel Ther ; 17: 1567-1582, 2023.
Article in English | MEDLINE | ID: mdl-37249931

ABSTRACT

Purpose: Dysfunction of endothelium is associated with multiple pathological vascular diseases. However, how to regulate reendothelialization after vascular injury is not well defined. This study aims to determine whether and how Paeonol controls reendothelialization following artery injury. Methods: The endothelium of murine carotid artery was denuded by catheter guide wires injury. H&E staining and IF staining were performed to determine whether Paeonol is critical for reendothelialization. BRDU Incorporation Assay, Boyden Chamber Migration Assay, Tube Formation Assay, and Spheroid Sprouting Assay were used to investigate whether Paeonol is involved in regulating proliferation and migration of endothelial cells. The underlying mechanism of how Paeonol regulates reendothelialization was determined by Molecular docking simulation and CO-IP Assay. Results: Paeonol treatment significantly inhibits neointima formation in carotid artery ligation model by promoting proliferation and migration of endothelial cells. Mechanistically, Paeonol enhances c-Myc expression, consequently interacts with VEGFR2 results in activating VEGF signaling pathway, and eventually promotes reendothelialization after vascular injury. Conclusion: Our data demonstrated that Paeonol plays a critical role in regulating vascular reendothelialization, which may be therapeutically used for treatment of pathological vascular diseases.


Subject(s)
Carotid Artery Injuries , Vascular System Injuries , Mice , Animals , Vascular System Injuries/drug therapy , Vascular System Injuries/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Carotid Artery Injuries/drug therapy , Carotid Artery Injuries/pathology , Molecular Docking Simulation , Signal Transduction , Cells, Cultured
9.
Food Funct ; 13(23): 12077-12092, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36367287

ABSTRACT

Aims: The proliferation and migration of vascular smooth muscle cells (VSMCs) play vital roles in the pathological process of neointima formation after vascular injury. Galangin, an extract of the ginger plant galangal, is involved in numerous biological activities, including inhibiting the proliferation and migration of tumor cells, but its effect on VSMCs is unknown. This study focused on the role and mechanism of galangin in the neointima formation induced by vascular injury. Methods and results: In this study, we found that galangin restrained the PDGF-BB-induced proliferation, migration and phenotypic switching of VSMCs in a concentration-dependent manner. In vivo, we established a model of carotid artery balloon injury in rats, followed by intragastric administration of galangin (40 mg kg-1 day-1 or 80 mg kg-1 day-1) for 14 or 28 consecutive days. Then, the degree of neointima hyperplasia was evaluated by H&E staining, and the level of relevant protein expression was assessed by immunofluorescence and western blotting. In vitro, we isolated and grew primary rat aortic smooth muscle cells, which were treated with PDGF-BB and different doses of galangin, and then CCK-8 assay, wound healing assay, transwell assay, western blotting and immunofluorescence assays were performed. We found that galangin significantly inhibited PDGF-BB-induced proliferation, migration, and phenotypic switching of VSMCs and promoted autophagy in VSMCs in vitro, and galangin significantly inhibited neointimal hyperplasia after the common carotid artery balloon injury in rats. In terms of mechanisms, galangin inhibited the PI3K/AKT/mTOR pathway, thereby suppressing VSMC's switch from a contractile to a synthetic phenotype, inhibiting VSMC proliferation, migration and phenotypic switching and upregulating the Beclin1 protein expression levels and the ratio of LC3BII/I, promoting VSMC autophagy, and thereby inhibiting neointimal hyperplasia after vascular injury. Conclusion: Our study suggests that galangin inhibits neointimal hyperplasia after vascular injury by inhibiting smooth muscle cell proliferation, migration and phenotypic switching and by promoting autophagy, and that galangin may be a promising drug for the prevention and treatment of vascular restenosis after PCI.


Subject(s)
Carotid Artery Injuries , Percutaneous Coronary Intervention , Vascular System Injuries , Rats , Animals , Neointima/drug therapy , Neointima/metabolism , Neointima/pathology , Becaplermin/metabolism , Becaplermin/pharmacology , Becaplermin/therapeutic use , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Vascular System Injuries/drug therapy , Vascular System Injuries/genetics , Vascular System Injuries/metabolism , Muscle, Smooth, Vascular , Hyperplasia/metabolism , Hyperplasia/pathology , Cell Movement , Cell Proliferation , Rats, Sprague-Dawley , Carotid Artery Injuries/drug therapy , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Myocytes, Smooth Muscle , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Cells, Cultured
10.
Biomed Pharmacother ; 155: 113639, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36088853

ABSTRACT

BACKGROUND AND AIMS: TMAO is a microbiota-dependent metabolite associated with increased risk of various cardiovascular diseases. However, the relationship between TMAO and vascular injury-related neointimal hyperplasia is unclear. This study aimed to explore whether TMAO promotes neointimal hyperplasia after balloon injury and elucidate the underlying mechanism. METHODS AND RESULTS: Through hematoxylin and eosin staining and immunohistochemistry staining, we found that supplementary TMAO promoted balloon injury-induced neointimal hyperplasia, while reducing TMAO by antibiotic administration produced the opposite result. TMAO showed limited effect on rat aortic vascular smooth muscle cells (RAOSMCs) proliferation and migration. However, TMAO notably induced dysfunction of rat aortic vascular endothelial cells (RAOECs) in vitro and attenuated reendothelialization of carotid arteries after balloon injury in vivo. Autophagic flux was measured by fluorescent mRFP-GFP-LC3, transmission electron microscopy, and western blot. TMAO impaired autophagic flux, as evidenced by the accumulation of p62 and LC3II and high autophagosome to autolysosome ratios. Furthermore, we confirmed that Beclin1 level increased in TMAO-treated RAOECs and carotid arteries. Knocking down Beclin1 alleviated TMAO-induced autophagic flux impairment and neointimal hyperplasia. CONCLUSIONS: TMAO promoted neointimal hyperplasia through Beclin1-induced autophagic flux blockage, suggesting that TMAO is a potential target for improvement of vascular remodeling after injury.


Subject(s)
Carotid Artery Injuries , Rats , Animals , Hyperplasia/metabolism , Beclin-1/metabolism , Carotid Artery Injuries/pathology , Muscle, Smooth, Vascular , Endothelial Cells/metabolism , Hematoxylin/metabolism , Hematoxylin/pharmacology , Eosine Yellowish-(YS)/metabolism , Eosine Yellowish-(YS)/pharmacology , Cell Proliferation , Rats, Sprague-Dawley , Neointima/pathology , Anti-Bacterial Agents/pharmacology , Oxides/pharmacology
11.
Mol Biol Rep ; 49(9): 8301-8315, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35715609

ABSTRACT

BACKGROUND: Endovascular treatment of atherosclerotic arterial disease exhibits sex differences in clinical outcomes including restenosis. However, sex-specific differences in arterial identity during arterial remodeling have not been described. We hypothesized that sex differences in expression of the arterial determinant erythropoietin-producing hepatocellular receptor interacting protein (Ephrin)-B2 occur during neointimal proliferation and arterial remodeling. METHODS AND RESULTS: Carotid balloon injury was performed in female and male Sprague-Dawley rats without or 14 days after gonadectomy; the left common carotid artery was injured and the right carotid artery in the same animal was used as an uninjured control. Arterial hemodynamics were evaluated in vivo using ultrasonography pre-procedure and post-procedure at 7 and 14 days and wall composition examined using histology, immunofluorescence and Western blot at 14 days after balloon injury. There were no significant baseline sex differences. 14 days after balloon injury, there was decreased neointimal thickness in female rats with decreased smooth muscle cell proliferation and decreased type I and III collagen deposition, as well as decreased TNFα- or iNOS-positive CD68+ cells and increased CD206- or TGM2-positive CD68+ cells. Female rats also showed less immunoreactivity of VEGF-A, NRP1, phosphorylated EphrinB2, and increased Notch1, as well as decreased phosphorylated Akt1, p38 and ERK1/2. These differences were not present in rats pretreated with gonadectomy. CONCLUSIONS: Decreased neointimal thickness in female rats after carotid balloon injury is associated with altered arterial identity that is dependent on intact sex hormones. Alteration of arterial identity may be a mechanism of sex differences in neointimal proliferation after arterial injury.


Subject(s)
Carotid Artery Injuries , Animals , Carotid Arteries/pathology , Carotid Artery Injuries/complications , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Disease Models, Animal , Female , Hyperplasia/pathology , Male , Neointima/complications , Neointima/metabolism , Neointima/pathology , Rats , Rats, Sprague-Dawley , Sex Characteristics
12.
Atherosclerosis ; 351: 9-17, 2022 06.
Article in English | MEDLINE | ID: mdl-35605369

ABSTRACT

BACKGROUND AND AIMS: Endothelial cell injury causes vascular barrier dysfunction and leukocyte recruitment to the underlying tissue. Bone morphogenetic protein 4 (BMP-4) is a transforming growth factor that exerts pro-inflammatory effects on the endothelium. Here, we investigated the effects of BMP-4 on endothelial cell (EC) migration following balloon injury in SD rats. METHODS: An intimal hyperplasia model was established using balloon injury. Hematoxylin-eosin staining (HE) and silver staining were used to detect the alteration of endothelial cells recovery after balloon injury. Serum BMP-4 levels were assessed by ELISA. Human umbilical vein endothelial cells (HUVECs) were cultured. MTT assay was used to measure cell viability. Protein expression was detected by Western blot. Intracellular reactive oxygen species (ROS) was detected by dichloro-dihydro-fluorescein diacetate (DCFH-DA). HUVECs migration was measured via transwell assay and scratch wound assay. RESULTS: The results indicated that BMP-4 inhibition significantly decreased total plasma activity of BMP-4 and reduced neointimal hyperplasia by stimulating endothelial cell migration, but did not affect the medial area following balloon injury. BMP-4 suppressed the formation of ROS via forkhead box O3 (FoXO-3)/superoxide dismutase 1 (SOD-1). In vitro, a high level of ROS induced by BMP-4 impeded HUVECs migration. CONCLUSIONS: The results suggest that BMP-4 inhibition is a potential means of preventing intimal hyperplasia formation after balloon injury.


Subject(s)
Bone Morphogenetic Protein 4 , Human Umbilical Vein Endothelial Cells , Animals , Bone Morphogenetic Protein 4/antagonists & inhibitors , Bone Morphogenetic Protein 4/biosynthesis , Bone Morphogenetic Protein 4/blood , Carotid Artery Injuries/blood , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Cell Movement , Cells, Cultured , Forkhead Box Protein O3/biosynthesis , Forkhead Box Protein O3/blood , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hyperplasia , Neointima/blood , Neointima/metabolism , Neointima/pathology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/blood , Reactive Oxygen Species/metabolism , Superoxide Dismutase-1/biosynthesis , Superoxide Dismutase-1/blood
13.
J Cardiovasc Transl Res ; 15(5): 1086-1099, 2022 10.
Article in English | MEDLINE | ID: mdl-35244876

ABSTRACT

This research investigated the mechanism of CLU in vascular restenosis by regulating vascular smooth muscle cell (VSMC) proliferation and migration. Firstly, rat models of balloon injury (BI) were established, followed by the assessment of the injury to the common carotid artery. The effect of CLU on the intimal hyperplasia of BI rats was measured after the intervention in CLU, in addition to the evaluation of proliferation, migration, and autophagy of VSMCs. Moreover, the interaction between ATG and LC3 was analyzed, followed by validation of the role of autophagy in CLU's regulation on the proliferation and migration of VSMCs. It was found that CLU was highly expressed in BI rats. Altogether, our findings indicated that CLU was highly expressed in vascular restenosis, and CLU over-expression promoted the binding between ATG3 and LC3, thus facilitating VSMC autophagy and eventually attenuating intimal hyperplasia and vascular restenosis.


Subject(s)
Carotid Artery Injuries , Muscle, Smooth, Vascular , Rats , Animals , Muscle, Smooth, Vascular/pathology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Clusterin/metabolism , Clusterin/pharmacology , Hyperplasia/metabolism , Hyperplasia/pathology , Cell Movement , Cell Proliferation , Rats, Sprague-Dawley , Myocytes, Smooth Muscle/pathology , Autophagy , Cells, Cultured
14.
Cardiovasc Res ; 118(1): 316-333, 2022 01 07.
Article in English | MEDLINE | ID: mdl-33135066

ABSTRACT

AIMS: Chronic kidney disease (CKD) is an independent risk factor for the development of coronary artery disease (CAD). For both, CKD and CAD, the intercellular transfer of microRNAs (miRs) through extracellular vesicles (EVs) is an important factor of disease development. Whether the combination of CAD and CKD affects endothelial function through cellular crosstalk of EV-incorporated miRs is still unknown. METHODS AND RESULTS: Out of 172 screened CAD patients, 31 patients with CAD + CKD were identified and matched with 31 CAD patients without CKD. Additionally, 13 controls without CAD and CKD were included. Large EVs from CAD + CKD patients contained significantly lower levels of the vasculo-protective miR-130a-3p and miR-126-3p compared to CAD patients and controls. Flow cytometric analysis of plasma-derived EVs revealed significantly higher numbers of endothelial cell-derived EVs in CAD and CAD + CKD patients compared to controls. EVs from CAD + CKD patients impaired target human coronary artery endothelial cell (HCAEC) proliferation upon incubation in vitro. Consistent with the clinical data, treatment with the uraemia toxin indoxyl sulfate (IS)-reduced miR-130a-3p levels in HCAEC-derived EVs. EVs from IS-treated donor HCAECs-reduced proliferation and re-endothelialization in EV-recipient cells and induced an anti-angiogenic gene expression profile. In a mouse-experiment, intravenous treatment with EVs from IS-treated endothelial cells significantly impaired endothelial regeneration. On the molecular level, we found that IS leads to an up-regulation of the heterogenous nuclear ribonucleoprotein U (hnRNPU), which retains miR-130a-3p in the cell leading to reduced vesicular miR-130a-3p export and impaired EV-recipient cell proliferation. CONCLUSION: Our findings suggest that EV-miR-mediated vascular intercellular communication is altered in patients with CAD and CKD, promoting CKD-induced endothelial dysfunction.


Subject(s)
Carotid Arteries/metabolism , Carotid Artery Injuries/metabolism , Cell Communication , Cell Proliferation , Coronary Artery Disease/metabolism , Coronary Vessels/metabolism , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Renal Insufficiency, Chronic/metabolism , Adult , Aged , Aged, 80 and over , Animals , Carotid Arteries/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Case-Control Studies , Cell Proliferation/drug effects , Cells, Cultured , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Coronary Vessels/drug effects , Coronary Vessels/pathology , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/pathology , Extracellular Vesicles/drug effects , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Female , Humans , Indican/toxicity , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Middle Aged , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology
15.
Article in English | MEDLINE | ID: mdl-34610470

ABSTRACT

Phospholipase D (PLD) generates the signaling lipid phosphatidic acid (PA) and has been known to mediate proliferation signal in vascular smooth muscle cells (VSMCs). However, it remains unclear how PLD contributes to vascular diseases. VSMC proliferation directly contributes to the development and progression of cardiovascular disease, such as atherosclerosis and restenosis after angioplasty. Using the mouse carotid artery ligation model, we find that deletion of Pld1 gene inhibits neointima formation of the injuried blood vessels. PLD1 deficiency reduces the proliferation of VSMCs in both injured artery and primary cultures through the inhibition of ERK1/2 and AKT signals. Immunohistochemical staining of injured artery and flow cytometry analysis of VSMCs shows a reduction of the levels of reactive oxygen species (ROS) in Pld1-/- VSMCs. An increase of intracellular ROS by hydrogen peroxide stimulation restored the reduced activities of ERK and AKT in Pld1-/- VSMCs, whereas a reduction of ROS by N-acetyl-l-cysteine (NAC) scavenger lowered their activity in wild-type VSMCs. These results indicate that PLD1 plays a critical role in neointima, and that PLD1 mediates VSMC proliferation signal through promoting the production of ROS. Therefore, inhibition of PLD1 may be used as a therapeutic approach to suppress neointimal formation in atherosclerosis and restenosis after angioplasty.


Subject(s)
Atherosclerosis/genetics , Carotid Artery Injuries/genetics , Neointima/genetics , Phospholipase D/genetics , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Injuries/pathology , Disease Models, Animal , Humans , Mice , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima/metabolism , Neointima/pathology , Reactive Oxygen Species/metabolism
16.
Cardiovasc Res ; 118(2): 622-637, 2022 01 29.
Article in English | MEDLINE | ID: mdl-33576766

ABSTRACT

AIMS: Von Willebrand factor (VWF) is a plasma glycoprotein involved in primary haemostasis, while also having additional roles beyond haemostasis namely in cancer, inflammation, angiogenesis, and potentially in vascular smooth muscle cell (VSMC) proliferation. Here, we addressed how VWF modulates VSMC proliferation and investigated the underlying molecular pathways and the in vivo pathophysiological relevance. METHODS AND RESULTS: VWF induced proliferation of human aortic VSMCs and also promoted VSMC migration. Treatment of cells with a siRNA against αv integrin or the RGT-peptide blocking αvß3 signalling abolished proliferation. However, VWF did not bind to αvß3 on VSMCs through its RGD-motif. Rather, we identified the VWF A2 domain as the region mediating binding to the cells. We hypothesized the involvement of a member of the LDL-related receptor protein (LRP) family due to their known ability to act as co-receptors. Using the universal LRP-inhibitor receptor-associated protein, we confirmed LRP-mediated VSMC proliferation. siRNA experiments and confocal fluorescence microscopy identified LRP4 as the VWF-counterreceptor on VSMCs. Also co-localization between αvß3 and LRP4 was observed via proximity ligation analysis and immuno-precipitation experiments. The pathophysiological relevance of our data was supported by VWF-deficient mice having significantly reduced hyperplasia in carotid artery ligation and artery femoral denudation models. In wild-type mice, infiltration of VWF in intimal regions enriched in proliferating VSMCs was found. Interestingly, also analysis of human atherosclerotic lesions showed abundant VWF accumulation in VSMC-proliferating rich intimal areas. CONCLUSION: VWF mediates VSMC proliferation through a mechanism involving A2 domain binding to the LRP4 receptor and integrin αvß3 signalling. Our findings provide new insights into the mechanisms that drive physiological repair and pathological hyperplasia of the arterial vessel wall. In addition, the VWF/LRP4-axis may represent a novel therapeutic target to modulate VSMC proliferation.


Subject(s)
Atherosclerosis/metabolism , Cell Proliferation , Integrin alphaVbeta3/metabolism , LDL-Receptor Related Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , von Willebrand Factor/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Cell Movement , Cells, Cultured , Hyperplasia , Integrin alphaVbeta3/genetics , LDL-Receptor Related Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/injuries , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Neointima , Plaque, Atherosclerotic , Signal Transduction , Vascular System Injuries/genetics , Vascular System Injuries/metabolism , Vascular System Injuries/pathology , von Willebrand Factor/genetics
17.
Sci Rep ; 11(1): 24345, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34934133

ABSTRACT

Mutations in the NF1 tumor suppressor gene are linked to arteriopathy. Nf1 heterozygosity (Nf1+/-) results in robust neointima formation, similar to humans, and myeloid-restricted Nf1+/- recapitulates this phenotype via MEK-ERK activation. Here we define the contribution of myeloid subpopulations to NF1 arteriopathy. Neutrophils from WT and Nf1+/- mice were functionally assessed in the presence of MEK and farnesylation inhibitors in vitro and neutrophil recruitment to lipopolysaccharide was assessed in WT and Nf1+/- mice. Littermate 12-15 week-old male wildtype and Nf1+/- mice were subjected to carotid artery ligation and provided either a neutrophil depleting antibody (1A8), liposomal clodronate to deplete monocytes/macrophages, or PD0325901 and neointima size was assessed 28 days after injury. Bone marrow transplant experiments assessed monocyte/macrophage mobilization during neointima formation. Nf1+/- neutrophils exhibit enhanced proliferation, migration, and adhesion via p21Ras activation of MEK in vitro and in vivo. Neutrophil depletion suppresses circulating Ly6Clow monocytes and enhances neointima size, while monocyte/macrophage depletion and deletion of CCR2 in bone marrow cells abolish neointima formation in Nf1+/- mice. Taken together, these findings suggest that neurofibromin-MEK-ERK activation in circulating neutrophils and monocytes during arterial remodeling is nuanced and points to important cross-talk between these populations in the pathogenesis of NF1 arteriopathy.


Subject(s)
Carotid Artery Injuries/pathology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Myeloid Progenitor Cells/pathology , Neointima/pathology , Neurofibromatosis 1/pathology , Neurofibromin 1/physiology , Receptors, CCR2/physiology , Animals , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Carotid Artery Injuries/etiology , Carotid Artery Injuries/metabolism , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Monocytes/pathology , Myeloid Progenitor Cells/metabolism , Neointima/etiology , Neointima/metabolism , Neurofibromatosis 1/etiology , Neurofibromatosis 1/metabolism
18.
Arterioscler Thromb Vasc Biol ; 41(12): 2961-2973, 2021 12.
Article in English | MEDLINE | ID: mdl-34670409

ABSTRACT

OBJECTIVE: Vascular smooth muscle cell (SMC) proliferation contributes to neointima formation following vascular injury. Circular RNA-a novel type of noncoding RNA with closed-loop structure-exhibits cell- and tissue-specific expression patterns. However, the role of circular RNA in SMC proliferation and neointima formation is largely unknown. The objective of this study is to investigate the role and mechanism of circSOD2 in SMC proliferation and neointima formation. Approach and Results: Circular RNA profiling of human aortic SMCs revealed that PDGF (platelet-derived growth factor)-BB up- and downregulated numerous circular RNAs. Among them, circSOD2, derived from back-splicing event of SOD2 (superoxide dismutase 2), was significantly enriched. Knockdown of circSOD2 by short hairpin RNA blocked PDGF-BB-induced SMC proliferation. Inversely, circSOD2 ectopic expression promoted SMC proliferation. Mechanistically, circSOD2 acted as a sponge for miR-206, leading to upregulation of NOTCH3 (notch receptor 3) and NOTCH3 signaling, which regulates cyclin D1 and CDK (cyclin-dependent kinase) 4/6. In vivo studies showed that circSOD2 was induced in neointima SMCs in balloon-injured rat carotid arteries. Importantly, knockdown of circSOD2 attenuated injury-induced neointima formation along with decreased neointimal SMC proliferation. CONCLUSIONS: CircSOD2 is a novel regulator mediating SMC proliferation and neointima formation following vascular injury. Therefore, circSOD2 could be a potential therapeutic target for inhibiting the development of proliferative vascular diseases.


Subject(s)
Carotid Artery Injuries/genetics , Muscle, Smooth, Vascular/metabolism , Neointima/genetics , Superoxide Dismutase/genetics , Vascular Remodeling/genetics , Animals , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Cell Movement , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Male , Muscle, Smooth, Vascular/pathology , Neointima/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Superoxide Dismutase/biosynthesis
19.
Food Funct ; 12(21): 10950-10966, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34647944

ABSTRACT

Vascular intimal hyperplasia is a hallmark event in vascular restenosis. The excessive proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) play important roles in the pathological mechanism of vascular intimal hyperplasia. Physalin B is an alcoholate isolated from Physalis (Solanaceae) that has a wide range of biological activities. However, the effect of physalin B on VSMCs is currently unclear. In this study, we demonstrated that physalin B significantly inhibited the proliferation, migration and phenotypic transformation of VSMCs induced by PDGF-BB. Physalin B also reduced inflammation and oxidative stress in VSMCs induced by PDGF-BB. Mechanistic studies showed that physalin B plays a role mainly by activating Nrf2. After Nrf2 activation, physalin B mitigates oxidative stress by enhancing the expression of the antioxidant gene HO-1; on the other hand, physalin B inhibits the NF-κB pathway to alleviate the inflammatory response. These two effects ultimately reduce the proliferation, migration and phenotypic transformation of VSMCs induced by PDGF-BB. In addition, in the mouse carotid artery ligation model, physalin B prevented intimal hyperplasia and inhibited the proliferation, migration and phenotypic transformation of cells in the hyperplastic intima. In conclusion, we provided significant evidence that physalin B abrogates PDGF-BB-induced VSMC proliferation, migration, phenotypic transformation and intimal hyperplasia by activating Nrf2-mediated signal transduction. Therefore, physalin B may be a potential therapeutic agent for preventing or treating restenosis.


Subject(s)
Becaplermin/toxicity , Carotid Artery Injuries/drug therapy , Cell Proliferation/drug effects , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/drug effects , Secosteroids/pharmacology , Animals , Antioxidants/pharmacology , Carotid Artery Injuries/pathology , Cell Movement/drug effects , Constriction, Pathologic/drug therapy , Down-Regulation , Gene Expression Regulation/drug effects , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Inflammation/drug therapy , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/physiology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Random Allocation
20.
Am J Physiol Heart Circ Physiol ; 321(5): H893-H904, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34559579

ABSTRACT

We have previously shown that several components of the RhoA signaling pathway control smooth muscle cell (SMC) phenotype by altering serum response factor (SRF)-dependent gene expression. Because our genome-wide analyses of chromatin structure and transcription factor binding suggested that the actin depolymerizing factor, destrin (DSTN), was regulated in a SMC-selective fashion, the goals of the current study were to identify the transcription mechanisms that control DSTN expression in SMC and to test whether it regulates SMC function. Immunohistochemical analyses revealed strong and at least partially SMC-selective expression of DSTN in many mouse tissues, a result consistent with human data from the genotype-tissue expression (GTEx) consortium. We identified several regulatory regions that control DSTN expression including a SMC-selective enhancer that was activated by myocardin-related transcription factor-A (MRTF-A), recombination signal binding protein for immunoglobulin κ-J region (RBPJ), and the SMAD transcription factors. Indeed, enhancer activity and endogenous DSTN expression were upregulated by RhoA and transforming growth factor-ß (TGF-ß) signaling and downregulated by inhibition of Notch cleavage. We also showed that DSTN expression was decreased in vivo by carotid artery injury and in cultured SMC cells by platelet-derived growth factor-BB (PDGF-BB) treatment. siRNA-mediated depletion of DSTN significantly enhanced MRTF-A nuclear localization and SMC differentiation marker gene expression, decreased SMC migration in scratch wound assays, and decreased SMC proliferation, as measured by cell number and cyclin-E expression. Taken together our data indicate that DSTN is a negative feedback inhibitor of RhoA/SRF-dependent gene expression in SMC that coordinately promotes SMC phenotypic modulation. Interventions that target DSTN expression or activity could serve as potential therapies for atherosclerosis and restenosis.NEW & NOTEWORTHY First, DSTN is selectively expressed in SMC in RhoA/SRF-dependent manner. Second, a SMC-selective enhancer just upstream of DSTN TSS harbors functional SRF, SMAD, and Notch/RBPJ binding elements. Third, DSTN depletion increased SRF-dependent SMC marker gene expression while inhibiting SMC migration and proliferation. Taken together, our data suggest that DSTN is a critical negative feedback inhibitor of SMC differentiation.


Subject(s)
Actins/metabolism , Carotid Artery Injuries/metabolism , Cell Differentiation , Destrin/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Cell Movement , Cell Proliferation , Cells, Cultured , Chemokine CXCL12/metabolism , Destrin/genetics , Disease Models, Animal , Feedback, Physiological , Gene Expression Regulation , Humans , Mice , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phenotype , Promoter Regions, Genetic , Rats , Rats, Wistar , Receptors, Notch/metabolism , Signal Transduction , Transcription, Genetic , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...